Protooncogene Ski cooperates with the chromatin-remodeling factor Satb2 in specifying callosal neurons.

نویسندگان

  • Constanze Baranek
  • Manuela Dittrich
  • Srinivas Parthasarathy
  • Carine Gaiser Bonnon
  • Olga Britanova
  • Dmitriy Lanshakov
  • Fatiha Boukhtouche
  • Julia E Sommer
  • Clemencia Colmenares
  • Victor Tarabykin
  • Suzana Atanasoski
چکیده

First insights into the molecular programs orchestrating the progression from neural stem cells to cortical projection neurons are emerging. Loss of the transcriptional regulator Ski has been linked to the human 1p36 deletion syndrome, which includes central nervous system defects. Here, we report critical roles for Ski in the maintenance of the neural stem cell pool and the specification of callosal neurons. Ski-deficient callosal neurons lose their identity and ectopically express the transcription factor Ctip2. The misspecified callosal neurons largely fail to form the corpus callosum and instead redirect their axons toward subcortical targets. We identify the chromatin-remodeling factor Satb2 as a partner of Ski, and show that both proteins are required for transcriptional repression of Ctip2 in callosal neurons. We propose a model in which Satb2 recruits Ski to the Ctip2 locus, and Ski attracts histone deacetylases, thereby enabling the formation of a functional nucleosome remodeling and deacetylase repressor complex. Our findings establish a central role for Ski-Satb2 interactions in regulating transcriptional mechanisms of callosal neuron specification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Satb2 Regulates the Differentiation of Both Callosal and Subcerebral Projection Neurons in the Developing Cerebral Cortex.

The chromatin-remodeling protein Satb2 plays a role in the generation of distinct subtypes of neocortical pyramidal neurons. Previous studies have shown that Satb2 is required for normal development of callosal projection neurons (CPNs), which fail to extend axons callosally in the absence of Satb2 and instead project subcortically. Here we conditionally delete Satb2 from the developing neocort...

متن کامل

Satb2 Regulates Callosal Projection Neuron Identity in the Developing Cerebral Cortex

Satb2 is a DNA-binding protein that regulates chromatin organization and gene expression. In the developing brain, Satb2 is expressed in cortical neurons that extend axons across the corpus callosum. To assess the role of Satb2 in neurons, we analyzed mice in which the Satb2 locus was disrupted by insertion of a LacZ gene. In mutant mice, beta-galactosidase-labeled axons are absent from the cor...

متن کامل

A network of genetic repression and derepression specifies projection fates in the developing neocortex.

Neurons within each layer in the mammalian cortex have stereotypic projections. Four genes-Fezf2, Ctip2, Tbr1, and Satb2-regulate these projection identities. These genes also interact with each other, and it is unclear how these interactions shape the final projection identity. Here we show, by generating double mutants of Fezf2, Ctip2, and Satb2, that cortical neurons deploy a complex genetic...

متن کامل

Satb2 Is a Postmitotic Determinant for Upper-Layer Neuron Specification in the Neocortex

Pyramidal neurons of the neocortex can be subdivided into two major groups: deep- (DL) and upper-layer (UL) neurons. Here we report that the expression of the AT-rich DNA-binding protein Satb2 defines two subclasses of UL neurons: UL1 (Satb2 positive) and UL2 (Satb2 negative). In the absence of Satb2, UL1 neurons lose their identity and activate DL- and UL2-specific genetic programs. UL1 neuron...

متن کامل

A Mammalian Conserved Element Derived from SINE Displays Enhancer Properties Recapitulating Satb2 Expression in Early-Born Callosal Projection Neurons

Short interspersed repetitive elements (SINEs) are highly repeated sequences that account for a significant proportion of many eukaryotic genomes and are usually considered "junk DNA". However, we previously discovered that many AmnSINE1 loci are evolutionarily conserved across mammalian genomes, suggesting that they may have acquired significant functions involved in controlling mammalian-spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 9  شماره 

صفحات  -

تاریخ انتشار 2012